87 research outputs found

    Reachability analysis of discrete-time systems with disturbances

    No full text
    Published versio

    Invariant approximations of the minimal robust. positively invariant set

    No full text
    Published versio

    Nominal model predictive control

    Get PDF
    5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.)International audienceModel Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nominal setting

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Predictive functional control for unstable first-order dynamic systems

    Get PDF
    Predictive functional control (PFC) has emerged as a popular industrial choice owing to its simplicity and cost-effectiveness. Nevertheless, its efficacy diminishes when dealing with challenging dynamics because of prediction mismatch in such scenarios. This paper presents a proposal for reducing prediction mismatch and thus improving behaviour for simple unstable processes; a two-stage design methodology pre-stabilises predictions via proportional compensation before introducing the PFC component. It is demonstrated that pre-stabilisation reduces the dependency of the closed-loop pole on the coincidence point and also improves robustness to uncertainty. Simulation results verify the improved performance as compared to conventional PFC

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Sampled-data model predictive control using adaptive time-mesh refinement algorithms

    Get PDF
    We address sampleddata nonlinear Model Predictive Control (MPC) schemes, in particular we address methods to efficiently and accurately solve the underlying continuous-time optimal control problems (OCP). In nonlinear OCPs, the number of discretization points is a major factor affecting the computational time. Also, the location of these points is a major factor affecting the accuracy of the solutions. We propose the use of an algorithm that iteratively finds the adequate timemesh to satisfy some predefined error estimate on the obtained trajectories. The proposed adaptive timemesh refinement algorithm provides local mesh resolution considering a timedependent stopping criterion, enabling an higher accuracy in the initial parts of the receding horizon, which are more relevant to MPC. The results show the advantage of the proposed adaptive mesh strategy, which leads to results obtained approximately as fast as the ones given by a coarse equidistantspaced mesh and as accurate as the ones given by a fine equidistantspaced mesh. (c) Springer International Publishing Switzerland 2017
    corecore